81 research outputs found

    Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    Get PDF
    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license

    The State of the Art in Flow Visualization: Dense and Texture-Based Techniques

    Get PDF
    Flow visualization has been a very attractive component of scientific visualization research for a long time. Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods. Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualization, flow visualization, computational flow visualizatio

    Flexible Abstraction Layers for VR application development

    Get PDF
    The development of domain-specific Virtual Reality applications is often a slow and laborious process. The integration of the domain-specific functionality in an interactive Virtual Environment requires close collaboration between domain expert and VR developer, as well as the integration of domain-specific data and software in a VR application. The software environment needs to support the entire development process and software life cycle, from the early stages of iterative, rapid prototyping to a final end-user application. In this paper, we propose the use of flexible abstraction layers in the form of a dynamic scripting language, which act as the glue between VR system components and external software libraries and applications. First, we discuss the motivation and potential of our approach, after which we overview related approaches. Then, we describe the integration of a Python interpreter in our VR toolkit. The potential of our integration approach is demonstrated by rapid prototyping features, the flexible extension of core functionality and the integration of an external toolkit. We conclude with an overview of implications our approach has for the future development of new framework features and application integration

    A Statistical Approach to The Life Cycle Analysis of Cumulus Clouds Selected in A Virtual Reality Environment

    Get PDF
    In this study, a new method is developed to investigate the entire life cycle of shallow cumuli in large eddy simulations. Although trained observers have no problem in distinguishing the different life stages of a cloud, this process proves difficult to automate, because cloud-splitting and cloud-merging events complicate the distinction between a single system divided in several cloudy parts and two independent systems that collided. Because the human perception is well equipped to capture and to make sense of these time-dependent three-dimensional features, a combination of automated constraints and human inspection in a three-dimensional virtual reality environment is used to select clouds that are exemplary in their behavior throughout their entire life span. Three specific cases (ARM, BOMEX, and BOMEX without large-scale forcings) are analyzed in this way, and the considerable number of selected clouds warrants reliable statistics of cloud properties conditioned on the phase in their life cycle. The most dominant feature in this statistical life cycle analysis is the pulsating growth that is present throughout the entire lifetime of the cloud, independent of the case and of the large-scale forcings. The pulses are a self-sustained phenomenon, driven by a balance between buoyancy and horizontal convergence of dry air. The convective inhibition just above the cloud base plays a crucial role as a barrier for the cloud to overcome in its infancy stage, and as a buffer region later on, ensuring a steady supply of buoyancy into the cloud

    Methylmalonic acid, vitamin B12, renal function, and risk of all-cause mortality in the general population:results from the prospective Lifelines-MINUTHE study

    Get PDF
    Background: Methylmalonic acid (MMA) is best known for its use as a functional marker of vitamin B12 deficiency. However, MMA concentrations not only depend on adequate vitamin B12 status, but also relate to renal function and endogenous production of propionic acid. Hence, we aimed to investigate to what extent variation in MMA levels is explained by vitamin B12 and eGFR and whether MMA levels are associated with mortality if vitamin B12 and eGFR are taken into account. Methods: A total of 1533 individuals (aged 60–75 years, 50% male) were included from the Lifelines Cohort and Biobank Study. Individuals were included between 2006 and 2013, and the total follow-up time was 8.5 years. Results: Median [IQR] age of the study population was 65 [62–69] years, 50% was male. At baseline, median MMA concentration was 170 [138–216] nmol/L, vitamin B12 290 [224–362] pmol/L, and eGFR 84 [74–91] mL/min/1.73 m2. Log 2 vitamin B12, log 2 eGFR, age, and sex were significantly associated with log 2 MMA in multivariable linear regression analyses (model R 2 = 0.22). After a total follow-up time of 8.5 years, 72 individuals had died. Log 2 MMA levels were significantly associated with mortality (hazard ratio [HR] 1.67 [95% CI 1.25–2.22], P < 0.001). Moreover, we found a significant interaction between MMA and eGFR with respect to mortality (P interaction < 0.001). Conclusions: Only 22% of variation in MMA levels was explained by vitamin B12, eGFR, age, and sex, indicating that a large part of variation in MMA levels is attributable to other factors (e.g., catabolism, dietary components, or gut microbial production). Higher MMA levels are associated with an increased risk for mortality, independent of vitamin B12, eGFR, and sex. This association was more pronounced in individuals with impaired renal function

    Mri-based visualisation of orbital fat deformation during eye motion

    Get PDF
    Summary. Orbital fat, or the fat behind the eye, plays an important role in eye movements. In order to gain a better understanding of orbital fat mobility during eye motion, MRI datasets of the eyes of two healthy subjects were acquired respectively in seven and fourteen different directions of gaze. After semi-automatic rigid registration, the Demons deformable registration algorithm was used to derive timedependent three-dimensional deformation vector fields from these datasets. Visualisation techniques were applied to these datasets in order to investigate fat mobility in specific regions of interest in the first subject. A qualitative analysis of the first subject showed that in two of the three regions of interest, fat moved half as much as the embedded structures. In other words, when the muscles and the optic nerve that are embedded in the fat move, the fat partly moves along with these structures and partly flows around them. In the second subject, a quantitative analysis was performed which showed a relation between the distance behind the sclera and the extent to which fat moves along with the optic nerve

    Multiethnic Exome-Wide Association Study of Subclinical AtherosclerosisCLINICAL PERSPECTIVE

    Get PDF
    The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease (CHD). We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the risk of subsequent CHD
    • …
    corecore